BT

Form Approved

REPORT DOCUMENTATION PAGE OM No, 67040183
Publlc. reporting burden for this coflection of is to 1 hour per the time for existing data i and the data heeded,
and and the ion of Send this burden estimate or any other aspect of this of ding suggestions for reducing this burden, to Washington
Services, t for [and Regorts, {0704-0188), 215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Rnpondcntxf should be aware that notwithstanding any other
mvtéo:&l) ::gé ;o person should be f\lbjoct to any penalty for falling to comply with a collection of Information if it does not display a currently valid OMB control numhor:. PLEASE D_O NOT RmRN YOUR FORM TO THE
1. REPORT DATE (DD-MM-YYYY) ' 2. REPORT TYPE 3. DATES COVERED (From — To)
26-11-2001 FINAL 26-11-2001 - 26-11-2001

4. TITLE AND SUBTITLE

Software Change and Regression Testing

5a. CONTRACT NUMBER
na

5b.
nfa

GRANT NUMBER _
5% PROG PROGRAMELEMENTNUMBER |
a .

' 8. AUTHOR(S)

LT Alex Hoover, USN

5d. PROJECT NUMBER
nla -)

5e, TASK NUMBER
nfa. .

5, WORK UNIT NUMBER
n/a i

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Commander Opbratmnal Test and Evaluation Force
7970 Diven Street ‘
Norfolk, VA 23505

§. PERFORMING ORGANIZATOIN REPORT
- NUMBER _) :
a .

9; SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Commander, Operational Test and Evaluation Force
7970 Diven Street
Norfolk, VA 23505

10 SPONSOR/MONITOR'S ACRONYM(S)
COMOPTEVFOR

:Ja' SPONSOWMONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unlimited

13. SUPPLEMENTARY NOTES
none

14. ABSTRACT

best. 1s the system configuration as s
will be delivered to the servicemember in the field a year from now?

Traditional software metrics fall short of providing useful answers to these questions. SLOC, version numbers, and releasé dates describe the physical
characteristics of an application. The questions that most often arise in the management of a software program, howeve\:, need Iinformation on t‘_e operational

performance of the application.

. The only constant Ié change. Nowhere is this more evident than In the world of soﬁware.

The addition of field changes, tr:atc*,hes updates and upgrades at regular,
{able today In test as it was sjx months a

short-term Intervals makes the acquisition of sofhfuére intensive s¥astems complex at
go at the last software review? Is today’s test item representative of the item that

15. SUBJECT TERMS
software, metrics, regression, operational test

'

16. SECURITY CLASSIFCATION:
UNCLASSIFIED)

b. REPORT ' b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

UMEE 19a. NAME 0# RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code): . . .

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Sta. 238-18
298-102

20020904 062

BT e e

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the
report, particularly the cover and title page. Instructions for filling in each block of the form follow: It is important to stay within the lines to meet optical

scanning requirements

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date mcludmg day, month, and
year, if available.

(e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether reportis.
interim, final. Etc. If applicable, enter inclusive report dates (e g. 10 June 87

— 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that
provides the most meaningful and complete information. Wehn a reportis
prepared in more than one volume, repeat the primary titie, add volume
number, and include subtitle for the specific volume. On classified -
documents.enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may
Include program element number(s), project number(s), task number(s),

~and work unit number(s). Use the following labels:

C - Contract
G — Grant
PE - Program Element

PR - Project
TA - Task
WU — Work Unit Accession No.

Block 6. Author(s). Name(s) of person(s) responsible for writing the
report, performing the research, or credited with the content of the report. if
editor or compller, this should follow name(s).

Block 7. Performing Qmanizatxon Name(s) and Address(es) Self-

explanatory.

Block 8. Performing Organization Report Number. Enter the unique
alphanumeric report number(s) assigned by the organization performing

the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-

explanatory.

Block 10. Sgonsorind/Monitorinq Agency Report Number. (if known)

Block 11. Supplementary Notes. Enter information not included
elsewhere such as: Prepared in cooperation with...; Trans. Of ...; To be
published in ... When a report is revised, include a statement whether the
new report supersedes or supplements the older report. i

/| classification on the top and bottom of the page.

‘report). An entry is this block is necessary if the abstract is to be limited. If

Block 12a. Distribution/Availability Statement. Denotes public availability
or limitations. Cite any availability to the public. Enter additional limitations
or special markings in alt capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, ’bistribution Statements on
Technical Documents.”

DOE - See authorities. = .
NASA - See Handbook NHB 2200.2.
NTIS — Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard .
Distribution for Unclassified Scientific and Technical Reports..

NASA - Leave blank.
NTIS - Leave blank.

Block 13. Abstfract. Include a brief (Maximum 200 words factual summary
of the most significant infonnation oohtained in the report.

Block 14. Subject Terms. Keywords or phrases identtfying major subjects
in the report

Block 15. Number of Pages. Enter the total number of pages.
Block 16. Price Code. Enter approp:riate price code (NTIS only).

Block 17. —19. Security Classifications. Self-explanatory. Enter U.S.
Security Classification In accordance:with U.S. Security Regulations (i.e.
UNCLASSIFIED). If form contains classified information, stamp

Block 20. Limitation of Abstract. This block must be completed to assign
a limitation to the abstract. Enter either UL (unlimited) or SAR (same as

blank, the abstract is assumed to be unlimited.

Standard Form 298 (Rev. 8-98)

UNCLAS

MORS Form revised 8-20-01

Software Change and Regressioiz,_ Te’stiizg

LT Alex Hoover, LT USN
Undersea Warfare Division
Commander, Operational Test and Evaluation Force
7970 Diven Street -
‘Norfolk, VA 23505
(757) 444-5546 x3397
hoovera@cotf.navy.mil

69th MORS Symposmm
Workmg/Composﬂe Group number (25 B) or Special Session
' 12-14 June 2001
. (26 November 2001)

Background

The only constant is change. Nowhere is
this more evident than in the world of
software. :

The addition of field changes, patches,
updates and upgrades at regular, short-
term intervals makes the acquisition of
software intensive systems complex at
best. Is the system configuration as
stable today in test as it was six months
ago at the last sofiware review? Is
today's test item representative of the
item that will be delivered to the
semcemember in the field a year from
now?

Traditional software metrics fall short of
providing useful ‘answers to these
questions. SLOC, version numbers, and
. release dates describe the physical
characteristics of an application. ~ The
questions that most often arise in the
management of a software program,
however, need information on the
operational performance of . the
‘application. To answer this type of

question in a meaningful way, we need -

1

" to make two evaluations: (1) We must

assess the performance based impact of a -
change, and (2) We must determine what
level of testing is required for the -
assessed performance impact.

This paper has three main points: (1)
describe a framework and a set of terms
of reference for discussing - the
operational impact of change in a
software application, (2) Provide an
example of applying this framework to
develop change metrics for a specific |
problem, and (3) illustrate the evaluation
of these metrics to make a programmatic
decision.

Study Case
Problem Statement
The specific problem under discussion -

will require an evaluation of .the
performance based impact of a code port

“from Ada to C++ (an increasingly

common event) for the acoustic
processors of a torpedo control system
and investigate the mnature of
understanding and developing such

UNCLAS

UNCLAS

MORS Form revised 8-20-01

impact based evaluations. The criteria
for use in this evaluation are Total
Architectural Change (TAC), a top-level
metric that describes the degree of
impact the code port will have on

torpedo performance, and Code Change.

(CC), a working-level metric that
describes the extent of change within the
components. TAC and CC will be used
to determine the amount and type of
regression testing required as a result of
the code port.

N

' Assumptions

Only a codé port is being te_Sted. There
are no changes in the host platform,
operating system, peripheral interfaces,

- torpedo body, or warhead characteristics.
If this assumption is not true, the tests

prescribed by this report will not
comprehensively - address required
regression testing of the torpedo.

The Ada code is implemented using
object oriented (OO) methodology (Ada
95 or later). If this assumption is not
true, the code port should be treated as if
the Total Architectural Change (TAC) is
100%. '

Testing 'Re_guirements
Risk Areas
Architecture

Various design decisions made in the
development of the software (component
communications, queuing, = object
hierarchy, data structures, etc.) for the
Ada design may or may mnot be
appropriate for use with a C++
implementation. These attributes of the
architecture must be analyzed with

2

respect to latency, data integrity,
modifiability, availability, reliability,
and stability to deterthine to what degree
the design must be changed in order to
meet the functional requirements of the
ADCAP. The degree of change in the

~ design will have a direct impact on the

changes required in the code.

TAC is calculated as the percentage of

Critical Software Components (CSC’s)

that undergo significant change as a
result of the code revision. The two
main tasks in calculating TAC, then, are

~to determine at what resolution to

distinguish CSC’s and to identify what is
a significant change. :

Division of CSC’s

The TAC is to have a macroscopic effect
on the testing requirements, determining
whether full-scale testing of the system

. will be required or the system can meet -

regression - criteria through gradated
testing based on code change. To
achieve this behavior, the TAC should -

" vary linearly with respect to change in

software function. Programmatically,
applications are often divided into
functional code segments that ‘are *
designed by a single team from a core
set of algorithms. These segments often
have one-to-one interface relationships
which are stable parts of the architecture.
These properties normally lead to the
linear behavior desired for TAC, and
thus identify program functional code
segments are good candidates for CSC’s.

To formally validate. linearity,
investigate the next higher and lower
possible sets of code divisions. Linear
behavior will be exhibited when
changing the implementation of a code
segment at the next lower level

UNCLAS

1 5

UNCLAS

MORS Form revised 8-20-01

necessitates changing' the
implementation of peer code segments.
At the highest level at which linearity is
achieved, a change in one code segment
does not necessitate a change in peer
code segments, making TAC evaluated
at the next higher level of division
different from the candidate level.-

In application, most types of code never

_exhibit strict linearity in this way, so an

engineering judgement call is required to
determine the highest level at which

TAC remains . stable when dlfferent-

segments are changed

Slgg;ficant Change

There are various differences between
the Ada and C++ languages that will
necessitate functional differences in the
implementation of the system. The DoD
Requirements for High Order Computer
Programming Languages (DOD 1976)
should be used to gauge functional
changes in the code. If the Ada code
exploits a Steclman requirement not
provided in C++, the code should be
considered significantly changed. Note
that the Steelman is not being used to
determine the suitability of either
language for the intended purpose, but
rather to provide a common basis of
comparison for the functional aspects of

different implementations of the same -
‘design in the two languages.

Code Change

Code Change should be accounted at the

lowest level possible for the application,
in this case along the domain of object
methods and properties. A method or
property that requires oné or more
significant changes, as described above,
is considered changed. The measure of

3

- object change, §,, is the number of

changed methods and properties divided

by the total number of methods and

properties.

-8, =changed methods + changed properties

total methods + total properties .

The first-degree extent of change, ext!, is -
the -number of object interfaces that

_change involves divided by the total

number of object interfaces. An object
interface is defined as the relationship
between two objects where one object
activates the methods or quenes the.
properties of another.

ext! = pumber of changed object interfaces
total number of object interfaces-

The Code Change within the software
system, A, used to evaluate risk for this
code port is.the product of the ‘total
object change and the ﬁrst-degree extent
of change:

A=35, x ext!
The total code change will determine
gradation of testing requirements as
appropriate for the determined level of

change.

Types of Test

The purpose of determining the TAC

~and CC for an application undergoing
revision is to direct the .test efforts for

that system to achieve maximum
confidence in system performance while
incurring minimum cost. Listed below

- is a representative subset of different
_testing techniques (DMSO- 2001) that

can be used to verify the regression
performance of the torpedo controller
after the revision to the acoustic

UNCLAS

- performance in different ways.

UNCLAS

MORS Form revised 8-20-01 -

functional segment. Each type of test
requires different resources and looks at

Functional Component Test

A full Functional Component Test
requires testing the performance of each
CSC against its requirements. A partial
Functional Component Test requires
testing the performance of CSCs in

which an object has undergone -

significant change.
Integration Test

An Integration Test tests the interaction

among CSCs, ensuring functional -

correctness and the ability to meet
quality requirements (latency, stability,
reliability, etc.) of the design. .Thread
testing is exemplary of an integration
test. Functional component tests along
with integration tests provide the basis
for acceptance of the modified system
for operational test.

Turing Test

In a Turing test, two syStems are run

under identical conditions. Subject -
matter = experts compare - the

performances of the systems in an
attempt to identify any distinctions
between the systems. For the purposes
of a Turing test on the torpedo code
port, the Naval Undersea Warfare

Center, Newport RI = Weapons
Assessment Facility modeling -and .
simulation application could be an

acceptable test environment. . The test
plan for such a test would specify the
required number of tests, initial
conditions of the test scenarios,
performance metrics to be compared,

and the subjective and objective criteria

4

for comparison. While the Turing test is
required to produce a high correlation
between the systems’ performances, the
number of tests conducted determines
the confidence of the result. -

The Turing test can only be: used to
ensure consistency of performance and
not to identify decline or improvement in
performance. If the code port results in
a significant improvement in.
performance, the system will fail the
Turing test. Failure of the Turing test
with improved performance in the
simulated environment does not equate
to confidence in improved performance
in the real world environment. Any
failure of the Turing test would require
in water testing to resolve the regression
requirement for the torpedo.

UNCLAS

UNCLAS

MORS Form revised 8-20-01

Functional

Component

Test

Integration

Test

Turing Test

In Water
Test

TAC> .2 Full - Mandatory N/A Mandatory
- TAC= [.8<A Full Mandatory N/A Mandatory
2 6< Full Mandatory High Dependent
A< .8 . - " Confidence
4< Full Mandatory Low Dependent
1A<.6 Confidence
In Water Test and the customer were willing to accept

The In Water Test is standard
COMOPTEVFOR at sea testing. If the

~ changes in the system due to the code
"port are so large or if the results of less
robust testing are confounded, as
described above, in water testing will be
required to resolve the regressmn
performance i issue.

Determining the Level of Test

By accepting a test method that takes a
more focused look at the system and
uses fewer - resources (though not
necessarily at lower organizational cost),

. the test authority accepts greater risk of

~ambiguous results that would require
further testing.

TAC and CC can be used to provide a -

high confidence estimate of the
minimum testing requirements for a

given code revision. Total Architectural -

Change is used a first level index of the
operational impact of the code revision.
A nominal threshold value must be

determined, above which a full, in-water -

test is required. This threshold roughly
- equates to the percentage of variability
that the end user of the application is
‘willing to accept between the old system
and the new system regression
performance. Thus, if the torpedo in
question had a 50% probability of hit

5

+ 5% variability, the TAC full test
threshold would be .2 (that is the range
of variability, 10% is .2 of the 50%
performance characteristic).

If the application is determined to be a
candidate for graduated testing, the
degree of testing should be determined
by the degree of Code Change. A
greater CC value indicates a greater
degree of change with respect to the
operational characteristics of the
application. Thus, the degree and type
of testing required to validate the new
software against regression performance
increases with increasing CC.. A
representative table showing the degree

. of testing required is given above.

‘ Summary

While change to software systems, on
the whole, .is difficult to describe, it is
possible to quantify the impact of change
to software on different programmatic
activities. With respect to regression
performance testing, the change to a
software system due to code revision
should be evaluated at the macroscopic
and working levels.

The macroscopic evaluation of software

change is based upon significant change
to high level Critical Software
Components At this level the impact of

UNCLAS

e

UNCLAS

MORS Form revised 8-20-01

change is proportional to the changes in
the system de31gn

The working 1evel ‘evaluation of change
is based upon both the volume of change
effected in the code and the degree of
interdependence within the code.
Change to a few lines of code that are
heavily accessed by the rest of the
application is weighted -as much as
extensive - change to relatively
independent pieces of code.

Both the macroscopic and the working |

level degrees of impact need to be
considered when determining the extent
of testing required to validate regression
performance of the application.

References

Department of Defense. The DoD
Requirements for High Order Computer
Programming Languages (Steelman).
1976.

Defense Modeling and Simulation
Office. DMSO Recommended Practzces
Guzde 2000.

Bibliography

Stevens, Roger T. Operational Test and
Evaluation: - A" Systems Engineering
Process. - Krieger Publishing Company.
Malabar FL. 1986.

DeWitt, R. N. Principles of Testing a

Data Fusion System. Pacific-Sierra
Research, Inc. 1998.

" Biography |

Lieutenant Alex - Hoover is -an

~ Operational Test Coordinator and

Modeling and Simulation Analyst in the

6

'Undersea Warfare division of

Commander, Operational - Test and

Evaluation Force. He has six years of at

sea experience working with software

systems in support of the Navy’s

Combat Logistics and Cruiser/Destroyer

fleets. He holds a BS CIS from the

department of Engineering at the Ohio
State University and an MS CIS from -
the University of Phoenix.

_ UNCLAS

